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where V( {q,} ) is a nonlinear interaction potential among the N particles of
mass m, located on a regular lattice, whose sites are labelled by the integer
index /. The displacement and momentum canonical coordinates of the /th
particle are denoted by qt and />,., respectively. Apart from remarkable
exceptions like the Toda chain/:) a generic choice for V yields a chaotic
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I. INTRODUCTION

Models of interest for applications in plasma and condensed matter physics
as well as in molecular biology and chemistry are described by many
degrees of freedom Hamiltonians of the form
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The problem of the existence of a strong stochasticity threshold in the FPU-/I
model is reconsidered, using suitable microcanonical observables of thermo-
dynamic nature, like the temperature and the specific heat. Explicit expressions
for these observables are obtained by exploiting rigorous methods of differential
geometry. Measurements of the corresponding temporal autocorrelation func-
tions locate the threshold at a finite value of the energy density, which is inde-
pendent of the number of degrees of freedom.

Cristian Giardina1 and Roberto Livi2

Received October 29, 1997

Ergodic Properties of Microcanonical Observables



dynamics. One of the main issues in this field is the existence of different
levels of chaos that typically occur when some control parameter (e.g.,
energy or energy density) is varied. Fermi, Pasta and Ulam in their
pioneeering numerical experiment,(2) first observed the strong rigidity of
\ow-k excitations that prevented equipartion of the energy among the
Fourier modes over exceedingly large time scales. Izrailev and Chirikov
provided an explanation of this fact in terms of the resonance-overlap
criterion,'3' while more refined numerical experiments showed that, for suf-
ficiently high energies, equipartition among the Fourier modes sets in very
rapidly.'4"7' In particular, already Bocchieri el a/.(5) raised the question of
the existence of an energy threshold separating a quasi-regular dynamics
from a highly chaotic phase. Nowadays, there is theoretical and numerical
evidence that such a threshold does exist for large values of N. In this
respect, it is worth stressing the following points:
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this threshold in general occurs at energy values that prevent any
possibility of quantitative explanation in terms of the canonical perturba-
tion theory;

in the strongly chaotic phase the time needed to reach equipartition
is almost independent of energy and N; just beyond the threshold it sud-
denly increases, while the dynamics results to be very weakly chaotic.

These remarks point out that the equipartition threshold (ET) separates
definitely different dynamical regimes, in such a way that for sufficiently
small energies the time needed for approaching equilibrium properties may
become so long that the dynamics maintains an ordered structure over any
practically available time scale.(8) On the other hand, it should be stressed
that ET does not seem to exhibit analogies with the standard scenario of
equilibrium phase transitions: for instance, it is not at all clear which kind
of symmetry breaking mechanism, if any, could be responsible for the
slowing down of energy equipartition among the Fourier modes.

A further crucial problem concerns the persistence of ET in the ther-
modynamic limit. This is a key point that recently led various authors to
reconsider this problem, by exploiting different approaches and techniques.
Let us briefly summarize the state of the art. Some investigations have
refined the original approach based on the study of energy equipartition
among the Fourier modes: the so-called spectral entropy was first intro-
duced as a global observable able to quantify the amount of energy equi-
partition/9' 10) The scaling properties of this quantity have been carefully
analyzed in refs. 11 and 12, yielding the conclusion that the time needed to
reach energy equipartition scales in a nontrivial way with both the energy
and N. Further numerical investigations and theoretical arguments based



on an improved treatment of the Chrikov's resonance overlap crite-
rion'12~14) indicate that, at least for \ow-k modes excitations, ET should
vanish in the thermodynamic limit.

An alternative approach to the characterization of the different
dynamical regimes occurring in models like (1) has been pursued by
directly investigating proper geometrical features of the phase space.
Concepts and tools taken from Riemannian geometry were translated in
Hamiltonian language in refs. 15-17. By exploiting such techniques it has
been possible to obtain an analytic estimate in the thermodynamic limit of
the maximum Lyapunov exponent as a function of the energy density for
the FPU /?-model.(18) It exhibits a crossover between a weak and a strong
chaotic regime when the energy density is increased beyond a threshold
value, that has been identified as the Strong Stochasticity Threshold
(SST).(19> Similar conclusions in favour of the existence of SST in the ther-
modynamic limit have been drawn by considering other specific geometri-
cal indicators, like generalized curvatures of the phase space, whose
reliability has been tested for various models.120"22' By the way, these
studies also indicate that in the strongly chaotic regime these models may
still be far from ergodic.

Upon all of these remarks, one might wonder if the existence of a
threshold (either ET or SST) may have some influence on the equilibrium
statistical properties of many degrees of freedom hamiltonian models.
Beyond the evident interest of such a question for the foundations of
Statistical Mechanics, this is a crucial point for molecular dynamics
applications, that usually assume the validity of the ergodic hypothesis, i.e.,
the equivalence of time and ensemble averages. Such a problem would be
solved from the very beginning if one could prove ergodicity for a model
like (1) . Unfortunately, this is possible only in a few special cases. On the
other hand, it is commonly accepted that chaoticity should be sufficient
for reproducing reliable statistical predictions for most of the observables
of physical interest. A partial disproval of this assumption was obtained
in ref. 23, where it has been shown that the equivalence between time
and ensemble averages for canonical thermodynamic observables (e.g.,
internal energy and specific heat) mainly depend on the model and on the
nature of the observable, rather than on the degree of chaoticity of the
dynamics.

In this paper we aim to clarify most of these open points by tackling
the problem through the direct comparison of statistical and dynamical
properties of microcanonical thermodynamic observables. The general for-
malism yielding explicit dynamical expressions for such observables is
introduced in Section II, where we also comment on their geometrical
nature. The results obtained by molecular dynamics calculations for the
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FPU jff-model are reported in Section III. We show that SST is predicted
by the decay rate of the temporal autocorrelation function associated with
the microcanonical temperature and specific heat, while ergodic-like
properties are found to depend mainly on the observable at hand, irrespec-
tively of the degree of chaoticity of the dynamics. Conclusions and perspec-
tives are contained in Section IV.

The equivalence in the thermodynamic limit of the predictions
obtained from different statistical ensembles (//-canonical, canonical and
G-canonical) is a widely accepted and partially proved fact.(24) Explicit
expressions for thermodynamic observables are usually computed by
canonical averages. Their relation with the corresponding microcanonical
averages was established in a celebrated paper by Lebowitz, Percus and
Verlet.(25> Only recently H. H. Rugh, assuming ergodicity of the phase
space, obtained a general rigorous expression for the temperature of the
microcanonical ensemble, that results to be strictly related to the geometri-
cal structure of the phase space.'26' Analogously, an explicit formula for the
specific heat at constant volume has been also obtained.'27'

In what follows we are going to reproduce the expressions of these
microcanonical thermodynamic quantities, by exploiting a different approach,
based on standard tools of differential geometry (see the Appendix). We
find that any of these quantities is an explicit, even if in some cases com-
plicated, function of the canonical coordinates. As a consequence, this
geometrical approach provides a natural bridge between a dynamical and
a thermodynamical description of the microcanonical ensemble. Upon the
remarks of the previous section, we are interested in understanding what
can be inferred about thermodynamics by molecular dynamics experiments
performed on hamiltonian models of the form (1). As we have already
stressed, in general such models are known not to be ergodic in a strictly
mathematical sense. In this perspective, it could be hard to find out more
appropriate probes for testing ergodicity, than such microcanonical ther-
modynamic observables.

In analogy with the rigorous approach of Rugh, we assume ergodicity
in order to guarantee that the microcanonical entropy S is a well defined
quantity associated to some hypervolume in phase space, equipped with a
uniform undecomposable probability measure. In the //-canonical ensemble
S plays the role of a generalized thermodynamic potential from which any
thermodynamic quantity can be obtained by derivations w.r.t. the physical
parameters energy E and volume V:

II. MICROCANONICAL THERMODYNAMIC QUANTITIES
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where OLE is defined as the thermal expansion coefficient in the /z-ensemble.
In order to be correctly defined S^ must fulfill the following properties:

additivity;

invariance under adiabatic reversible transformations;

it must be a non-decreasing function for irreversible adiabatic
transformations.

Two choices are possible for the ^-ensemble:

In these formulae we have set the Boltzmann constant KB = 1, while CN and
c'N are arbitrary constants to make the argument of the logarithm dimen-
sionless.

Definition A includes all the microstates compatible with the con-
straint H = E, i.e., those microstates belonging to the constant energy sur-
face ZE= {(q, p) €F| H(q, p) = E}. Alternatively, definition B considers as
microstates all those contained inside the hypervolume VE= {(q, p)eT\
H(q,p)^E} limited by ZE. Both definitions should be equivalent in the
thermodynamic limit.

Let us recall that the phase-space F = R2N is given the structure of
a symplectic manifold by the fundamental symplectic two-form u>2 =
Z?Li dqt A dp,. The Hamiltonian H: F^> R generates a vector field I-dH
(where / is the fundamental symplectic matrix) and an associated flux that
preserves the Liouville measure. For smooth potentials V({qt}) it seems
reasonable to assume that V'E is limited and that LE is smooth and connected.



Taking into account case A, one can easily obtain an expression for
the microcanonical temperature, that from here on we shall denote with 7^,
through the relation

The derivation and the full expression of this formula are reported in the
Appendix.

Analogously one can obtain an explicit formula for the specific heat
per particle at constant volume

Making use of a simple theorem of differential geometry one has
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By applying the differential geometry theorems reported in the Appendix
the following expression is obtained



Similarly, one can treat case B.
The temperature (that from here on we denote Tkin, for reasons that

will be clear in a moment) can be obtained by introducing a vector
rj = (0,..., 0, Xj, 0..., 0), that has the property V - ? / = l , and using the
divergence theorem:

III. NUMERICAL ANALYSIS

In this section we study the dynamical and statistical properties of the
microcanonical observables introduced in Section II. We consider the so-
called FPU jff-model, whose Hamiltonian is of the form (1) with
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This is the usual expression deriving form the virial theorem

that, for Hamiltonian (1) and for r\= l/N (0,..., 0, pl,..., pN), simplifies to

i.e., the same expression that is obtained in the canonical ensemble. One
could naively conclude that case B should correspond to the canonical
ensemble for any explicit expression of thermodynamic variables. Clearly
this is not the case, as one can easily conclude from the expression of the
specific heat per particle

Notice that cg depends on the ratio between Tkin and T^, that is quite a
different expression w.r.t. the corresponding canonical observable.
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We impose fixed boundary conditions, in such a way that the total energy
E is the only conserved quantity. All numerical experiments hereafter
reported were performed with /? = 0.1. (Notice that this is not a prejudice
of generality, since rescaling ft amounts to rescale E). The integration of
the equations of motion has been performed by a bilateral symplectic algo-
rithrn'281 in double precision, with a time step At = 0.005, that guarantees
the conservation of the energy at least on the sixth significative figure, for
the considered range of energies. The running time average for an observ-
able/and the corresponding variance, computed over the whole time span,
are defined as follows:

Numerical simulations typically have been performed over O(108) time
steps, after a transient of 105 time steps. Since in the bilateral symplectic
algorithm each time step amounts to 2-At, the total integration time in
natural units is O(106), that corresponds approximately to O(105) mini-
mum harmonic periods of oscillations. We have considered different values

Fig. 1. Running time averages for the temperatures Tkln (solid lines) and Ttl (dot-dashed
lines) for e. = 10 and N = 2", n = 5,..., 9. Increasing N, Tkin( 71,,) better and better approximates
the equilibrium expectation from below (above).
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of the energy density e = E/N and, at fixed e, different values of N. Let us
first analyze the strongly chaotic regime that, according to the results of
refs. 18, 20-22, should extend above s ~ O( 1). For the sake of space we
report here only the running time averages of Tt, and Tkin for e= 10 and
for N = 2",n = 5,...,9 (see Fig. 1). Notice that both <rw,>, and <r / (>,
approach an asymptotic value depending on N: the former observable
exhibits a fast convergence irrespectively of N, while the latter is charac-
terized by wild fluctuations that tend to weaken for increasing values of N.
Averaging over many different initial conditions allows one to reduce such
wild fluctuations and to extract more reliable estimates of the asymptotic
values attained by <7' /,>,. Both "temperatures" are found to converge
(from below and from above, respectively) to the same thermodynamic
limit value (T^ x 11.61) with corrections of O( 1 /N), as it should be expec-
ted on the basis of the ergodic theory (see Fig. 2). We have also checked
that the corresponding variances ^(Tkin) and i^(Tfl) scale both like l/N
thus showing that they are characterized by robust statistical properties. It
is worth stressing that even for such a high value of e the model is far from
ergodic in a strictly mathematical sense.121' On the other hand, both tem-
peratures seem to provide equally reliable thermodynamic predictions. We
have verified that the same qualitative behaviour is observed for values of e
ranging in the interval (1, 100). On this basis one can state that, at least for
high values of £, the two definitions of temperature are thermodynamically

Fig. 2. The inverse reduced temperature IRT= \T(N) - TI\^
> versus N for T/t(N) (circles)

and Ti,ln(N) (triangles). Solid lines are best fits.
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(even if not dynamically) equivalent, while remarking that measurements of
Tkin are much more efficient for any practical purpose.

A very different scenario is  obtained for e « O( 1),  i .e. ,  in the weakly
chaotic regime. As an example, the running time averages of T/t and Tkln

for £ = 0.01 and N= 128 are shown in Fig. 3, for three different initial con-
ditions. Tkin still fastly relaxes to an asymptotic value independently of the
initial condition. Conversely, Tlt exhibits a dramatic dependence on the
initial condition, despite its fluctuations are much less wild than in the
strongly chaotic regime. The comparison between the two temperatures is
quite illuminating. Tklll appears as a "good" thermodynamic observable
that converges to its equilibrium value, irrespectively of ergodicity. In the
perspective of the weak ergodic theorem by Khinchin(29) one would expect
that at least the temporal autocorrelation function of Tkin decays to zero.
The behaviour of Tt, clearly excludes this possibility, since its dependence
on the initial conditions shows that the trajectories over which both quan-
tities have been measured remain "trapped" for extremely long integration
times in different regions of the phase space. As an illustration, in Figs. 4
a,b we show the normalized temporal autocorrelation functions Cfl(t) and
Ckin(t) of the dynamical observables defining the two temperatures, for
£ = 0.01 and N = 128. The corresponding power spectra clearly indicate that
the dynamics amounts to a quasi-periodic motion with a few dominating
harmonic components, whose frequencies and amplitudes depend on the

Fig. 3. Running time averages for the temperatures Tkln (solid lines) and Ttl (dot-dashed
lines) for <;= 10~2, N= 128 and for three different initial conditions.
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Fig. 4. The temporal autocorrelation function of Tkla and 71,, for N = 256 and /:= 10 2
(a and b, respectively) and for /:= 10 (c and d, respectively).
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initial conditions. If one looks at the explicit expressions for Tfl and Tkln

this result appears much less mysterious: the former observable is sensitive
to the geometry of the phase space (mainly depending on V) through its
explicit dipendence on the q,\ while the latter is sampled over the sub-
manifold of the momenta p/'s that makes it insensitive to any geometrical
intricacy of the phase space (a straightforward calculation shows that
averaging Tkln over a quasiperiodic orbit yields the same prediction of equi-
librium statistical mechanics).

The measurement of C/t(t) and Ckitt(t) in the strongly chaotic regime
provides additional elements of information, that confirm the previous con-
clusions and allow one for obtaining a quantitative characterization of the
typical relaxation times of both temperatures to their equilibrium values. In
all numerical simulations hereafter reported C/t(t) and Cktn(t) have been
averaged over 5 • 105 initial conditions. Typical results are shown in Figs. 4
c,d for £ = 10 and N = 256. Both autocorrelation functions exhibit a fast
exponential decay modulated by an oscillation that is rapidly damped for
large times. At variance with Ck,,,(t), Cfl(t) presents also a typical
"hydrodynamic tail" that superposes to the exponential decay at large
values of /. This shows that, even in the strongly chaotic regime, the two
temperatures still exhibit quite different dynamical features that originate
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from their different geometrical nature, making them sensitive or insensitive
to the geometrical structure of the phase space.

A systematic inspection in a wide range of e in the strongly chaotic
regime and for N = 2", n = 5,..., 9 yields the following conclusions. The hull
of the autocorrelation functions can be confidently fitted by the following
laws

where T, is the same for both quantities and results to be independent of N,
as well as r2, and A is just a normalization constant. The main outcome
of this analysis is that, when varying e in the strongly chaotic regime, T} is
found to obey the following remarkable scaling law

with er«0.8 (see Fig. 5). It is worth stressing that this result allows to
locate unambigously the SST of the FPU //-model at a specific value of the
energy density that agrees with all the estimates obtained by the methods

Fig. 5. Log-log plot of I, 2 versus (i: — i:,.). The solid line is the best fit obtained assuming
the optimal estimate «,. = 0.79.
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mentioned in the Introduction. We want to observe that also T2 is found
to diverge at e,., altough the poor numerical accuracy in fitting the "hydro-
dynamic" decay of Cfl(t) does not allow, in this case, to extract a clean
scaling law.

The same analysis has been performed for the observables CA, CB and
for the canonical specific heat per particle obtained in ref. 25 as a function
of the microcanonical fluctuations of the total kinetic energy K

The running time averages of CA and cran exhibit behaviours very similar to
those reported in Fig. 1 for Tfl and Tkin, respectively. For the sake of space,
in Fig. 6 we simply report the scaling with N of the asymptotic values
attained by CA and ccan, that are found to converge to the same thermo-
dynamic limit value c^. We have also looked at the temporal auto-
correlation function of those observables, whose averages determine the
expressions of the specific heats per particle. In practice, the only new inter-
esting quantity, with respect to those already considered in the study of the
temperatures, is the numerator of the fraction in Eq. (7). We have verified
that its autocorrelation functions coincide with those of T/t for each value
of e. All these results indicate that these specific heats provide a scenario
fully consistent with the temperatures analysis.

Fig. 6. The inverse reduced specific heat IRC= \c(N)-c-/ \ ' versus N for cA(N) (circles)
and c,.,,,,(/V) (triangles). Solid lines are best fits.



On the contrary, the running time averages of CB are characterized by
extremely wild fluctuations, that do not show any tendency to a smooth
approach to the expected thermodynamic limit value over available time
spans. This fact definitely enforce the conclusion that relaxation
mechanisms may strongly depend on the very nature of the observable at
hand.

IV. CONCLUSIONS AND PERSPECTIVES

Upon assuming ergodicity, thermodynamic variables in the micro-
canonical ensemble can be explicitly written as dynamical quantities, by
exploiting standard methods of differential geometry. In the thermo-
dynamic limit they can be shown to coincide with the corresponding quan-
tities obtained in the canonical and gran-canonical ensembles (this can be
easily checked at least for some basic quantities like temperature, specific
heat etc.).

On the other hand, many degrees of freedom hamiltonian systems are
known not to be ergodic even at high energies.121' In particular, for suf-
ficiently small energy densities such models exhibit quasi-periodic evolution
along trajectories, that remain trapped inside some submanifold of the
phase space for extremely long integration times. This peculiar dynamical
feature is at the basis of the long-standing problem of "ergodicity
threshold" raised by the celebrated paper of FPU.(2> An up to date sum-
mary of this problem is contained in the introduction.

In this paper we have pointed our attention on the FPU /?-model,
providing an unambiguous description of the Strong Stochasticity
Threshold. This was obtained using the previously mentioned microcanoni-
cal observables as probes of ergodicity. In particular, this analysis allowed
us for locating the SST at a finite value of the energy density ec ^ 0.8, that
results to be independent of N. It is worth stressing that this value agrees
with rougher estimates still originating from the study of "geometrical"
observables. (18-22)

Moreover, the comparison with the corresponding canonical observ-
ables allows us for concluding that the crucial point about the ergodic
hypothesis concerns the very nature of the observable and not just the
features of the dynamics. Such a point of view was already raised by
Khinchin,(29) although we have shown that there may exist thermodynamic
observables (like Tkin and ccan) that converge to the predictions of equi-
librium statistical mechanics even when time averages are performed over
highly non-chaotic evolutions, where it is not certain that the "weak
ergodic theorem" of Khinchin applies.

1040 Giardina and Livi



Let us finally observe that one can obtain other different dynamical
expression for microcanonical observables by proper choices of the coor-
dinate space representation. The only constraint for such a choice is to
maintain invariant the flux through the constant energy surface. For
instance, in case B, one could choose the vector >/ = 1/2W( </,,..., qN,
Pi,..., pN), in such a way that the temperature depends also on the qt coor-
dinates. This arbitrariness, obviously, does not affect thermodynamic limit
properties, since all expressions for the same observables coincide, while,
dynamically, the scenario should not change significantly with respect to
the one described in Section III.

Nonetheless a detailed investigation of these different choices can
provide a deeper insight on the way "statistical fluctuations" can be con-
sistently introduced in the microcanonical ensemble. This point goes
beyond the aims of this paper and will be discussed elsewhere.

APPENDIX A

In this appendix we report a simple theorem of differential geometry
that allows one to express the derivatives of the entropy w.r.t. the energy
E. Moreover, we give the explicit expressions for the temperature and of
the quantities defining the specific heat of standard Hamiltonian (1).

Theorem. Consider EE as a (2N— 1 )-dimensional hypersurface of
R2N parametrized by H(x) = E, where H(x): R2N -> R is the Hamiltonian
function in the /"-space. Given a function/(x): R2N-» R, that is C2N(R2N),
we let
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where da denotes the (2N — 1 )-dimensional measure. Suppose that it exists
a constant c>0 such that \\VH\\ = <V//, V//>1/2Ssc. Then the following
formula holds for the n-th derivative of a>(E):

where A" denotes the nth iterate of the operator A, defined by



Proof. It clearly sufficies to prove the result for n- 1. We assume,
without loss of generality, that VH points towards the inside of the hyper-
surfaces parametrized by H(x) = E. Consider the difference quotient for
co(E)

and, remembering that n(x) = VH/\\VH\\ is the unit inner normal to LE at
point x, one can write

1042 Giardina and Livi

Exploiting the identity

where ne is the unit normal pointing toward the exteriors of the annular
region {xeR2N: E<H(x)<E + h}. We may now applay the divergence
theorem to obtain

Finally, using the co-area formula (see ref. 29), we have

and, taking the limit for h -> 0, we conclude that

If we consider the theorem with
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and the cases n = 1, 2 we obtain the expressions that enter in the formula
for temperature and specific heat given in the previous sections. In par-
ticular:

In the case of standard Hamiltonian (1), for which one has dH/dpt =
dV/dqt = —F, and dH/dp, = p,, the explicit dynamical expressions are:
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